Модуль упругости дерева сосна

Модуль упругости древесины

Упругость древесины – способность к восстановлению исходной формы после прекращения действия нагрузки. Это механическая характеристика, присущая строительным материалам, в том числе, дереву. Характеристика математически выражается модулем упругости – соотношением между нормальными напряжениями и относительными деформациями.

Несмотря на развитие технологий, появления большого разнообразия строительных материалов, дерево было и остается тем материалом, которому отдают предпочтение многие профессиональные строители и заказчики. Дерево как строительный материал используется с незапамятных времен. Сейчас внешний вид, конструкция построек из него значительно изменились. Пролеты деревянных построек могут достигать 120 м! Проектируя подобные строения, обязательно определяют внутренние усилия от действия внешних сил, в том числе с учетом деформированного состояния. В программах для подобных расчетов одной из исходных характеристик является модуль упругости. Рассчитывая этот показатель, определяют, какую нагрузку будет испытывать доска или брус без необратимой деформации, то есть не ломаясь. Чем больше значение характеристики, тем жестче материал.

Параметры, от которых зависит упругость древесины

Модуль упругости древесины — параметр изменяющийся, на его значение влияют:

  • Влажность. Упругость древесины находится в обратной зависимости от влажности. То есть при высокой влажности дерева, его способность возвращаться к исходной форме будет минимальной.
  • Прямослойность. Если волокна расположены извилисто, беспорядочно, то способность восстанавливать форму у неё будет заметно ниже, чем у прямослойной.
  • Плотность. Дерево с низкой плотностью не так упруго, как более плотное.
  • Возраст дерева. Древесина старого дерева более упруга, чем молодого.
  • Природные особенности дерева. Хвойные деревья имеют однорядные мелкие сердцевинные лучи, поэтому их древесина более упругая, хотя удельный вес у таких пород не велик.
  • Возраст самой древесины. Более молодые слои ствола дерева называют заболонью, те, что располагаются ближе к центру, и, соответственно, старее – ядром. Заболонь более упругая, чем ядро.

Нормативная документация

Упругость строительных материалов, древесины в частности, в значительной мере влияет на уровень безопасности для людей зданий и сооружений, а так же сохранности материальных ценностей в них находящихся. Поэтому разрабатываются и утверждаются нормативные документы, определяющие методологию определения параметра упругости а так же расчетов и проектирования конструкций из клееной и цельной древесины.

СНиП II-25-80. Деревянные конструкции. Строительные нормы и правила

СНиП II-25-80. Свод правил. Деревянные конструкции. Этот документ определяет методологию расчета и проектирования зданий, сооружений и конструкций из древесины (цельной и клееной). В том числе в СНиП определенно что конструкции из древесины должны:

  1. соответствовать требованиям расчетов по деформациям и по несущей способности;
  2. проектироваться с учетом условий эксплуатации, монтажа, перевозки;
  3. быть долговечными, что обеспечивается конструктивными решениями, защитной обработкой.

ГОСТ 16483.9-73 Древесина. Методы определения модуля упругости при статическом изгибе

ГОСТ 16483.9-73. Межгосударственный стандарт. Древесина. Методы определения модуля упругости при статическом изгибе. В данном ГОСТе:

  • установлены методы определения модуля упругости при статическом изгибе;
  • описан процесс определения данного показателя при статическом изгибе кондиционированных и не кондиционированных образцов;
  • даны образцы протоколов определения модулей упругости.

Модуль упругости дерева

Древесина считается упругой, если она после устранения действия силы изгибающей её, принимает исходную форму. У упругости есть предел. Он достигается, когда при изгибе деревянная детальили изделие сохранит конечную форму.Попросту говоря, предел упругости доски достигается в тот момент, когда она ломается. Свойства упругости и гибкости не идентичны. Гибкость – способность менять форму под действием внешних воздействий. Упругость – возможность возвращать утраченную форму. Дерево с высоким модулем необходимо для того, чтобы делать спортивные снаряды, мебель. Наиболее упруга древесина таких пород как ясень, бук, кария, лиственница.

Вместо термина упругость часто употребляют понятия жесткость или деформативность.

Чтобы описать способность к возвращению исходной формы, используют следующие физические величины:

  • модуль упругости Е;
  • коэффициент деформации µ;
  • модуль сдвига G.

В общем, можно говорить о том, что при приложении силы вдоль древесных волокон, модуль упругости в 20-25 раз выше, чем если та же сила действует поперек волокон. Если сила действует перпендикулярно направлению волокон и направлена радиально, то этот показатель на 20-50 % больше, чем при действии той же силы в тангенциальном направлении.

Ниже рассмотрим более подробно эти физические величины, определяющие способность дерева возвращать исходную форму при снятии деформирующего усилия.

Модуль упругости древесины основных пород

Модуль упругости в физике рассматривается как единое наименование комплекса физических величин, характеризующих способность твердого тела (в нашем случае – дерева) упруго деформироваться, если к нему будет приложена какая-то сила.

Модуль упругости древесины (Е) – соотношение между нормальными напряжениями и относительными деформациями. Он измеряется в Мпа либо в кГс/см 2 (1Мпа=10.197 кГс/см 2 ) Выделяют несколько видов:

  1. вдоль волокон Еа.
  2. поперек волокон (тангенциальный) Еt.
  3. поперек волокон (радиальный) Еr.
  4. модуль упругости при изгибе Еизг.

Таблица. Сведения по наиболее часто используемым породам.*

Коэффициенты поперечной деформации основных пород дерева

Во время приложения нагрузки, кроме продольной деформации вдоль волокон так же появляется поперечная при изгибе.

Коэффициенты этого типа деформации приведены в таблице:

Модуль сдвига основных пород древесины

Модуль сдвига – коэффициент пропорциональности между касательными напряжениями и угловыми деформациями древесины.

Данные по модулю сдвига для основных пород приведены ниже:

Пластичность древесины

Дерево способно под давлением менять без разрушения свою форму, сохранять её после того, как давление будет снято. Такое свойство называется пластичностью. Пластичность зависит от тех же критериев, что упругость, только в обратном направлении. Например, чем выше влажность древесины, тем она более пластична, при этом менее упруга.

Пластичность дерева повышают с помощью специальной обработки. Пропаривая или проваривая его в воде, получаем более пластичный материал, которую затем используют для изготовления мебели, полозьев саней. Наивысшая пластичность у бука, вяза, ясеня, дуба. Это свойство обусловлено строением проводящей системы данных пород. У бука, например, много крупных сердцевинных лучей, изгибающих волокна древесины. Сосуды, расположенные группами в годовых слоях вяза, дуба, ясеня, сильно сдавлены более плотной поздней древесиной, поэтому пластичность этих пород высока.

Коэффициент Пуассона

При приложении нагрузки к стержню, кроме продольной деформации ε, появляется поперечная деформация ε1. Коэффициентом поперечной деформации, или коэффициентом Пуассона μ, называется отношение ε1 к ε.

Коэффициент Пуассона древесины определяют путем сжатия прямоугольных призматических образцов сечением 40х40 мм, высотой 150 мм. Чтобы измерить деформацию на образце устанавливается шесть тензометров с базой 20 мм, передаточным числом около 1000. Из этих тензометров два регистрируют продольную деформацию (деформация в направлении действия силы сжатия), остальные четыре измеряют поперечные деформации в двух взаимно перпендикулярных направлениях. Каждый из образцов шестикратно нагружают до 400 и 1600 кг при сжатии вдоль волокон, до 40 и 160 кг при сжатии поперек волокон.

Для древесины сосны, ели коэффициент Пуассона при усилии, направленном вдоль волокон v=0,5.

Модуль упругости фанеры

Фанера – строительный материал, производимый путем склеивания нескольких слоев деревянного шпона. Она очень популяренна, и неспроста. Кроме эстетической ценности, фанера обладает рядом значений параметров, выделяющих её в ряду материалов для строительства. Проходя обработку, фанера приобретает прочность, упругость, влагостойкость.

На характеристики фанеры влияют многие факторы:

  • порода дерева, используемого для шпона;
  • исходное состояние сырья;
  • влажность самой фанеры;
  • тип и состав клея, которым соединяются слои шпона;
  • технология предварительной обработки.

Для фанеры так же рассчитывается модуль упругости и все соответствующие коэффициенты.

Важно то, что модуль упругости фанеры и другие показатели выше, чем у древесины, из которой она была изготовлена.

Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем. Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож.

Справочник | Лесоматериалы | Деревянное строительство

Вы здесь

Механические свойства древесины

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Читайте также  На каких деревьях растут вешенки в природе?
Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.

Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Рис. 3. Сдвиг древесины: а — вдоль волокон; б — перпендикулярно волокнам.
Рис. 4. Сдвиг деталей: а — обыкновенный; б — двойной.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие.

Твёрдость — это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

СНиП II-25-80 Деревянные конструкции — 3. Расчетные характеристики материалов

Содержание материала

  • СНиП II-25-80 Деревянные конструкции
  • 1. Общие положения
  • 2. Материалы
  • 3. Расчетные характеристики материалов
  • 4. Расчет элементов деревянных конструкций а. расчет элементов деревянных конструкций по предельным состояниям первой группы. центрально-растянутые и центрально-сжатые элементы
  • Изгибаемые элементы
  • Элементы, подверженные действию осевой силы с изгибом
  • Расчетные длины и предельные гибкости элементов деревянных конструкций
  • Особенности расчета клееных элементов из фанеры с древесиной
  • 5. Расчет соединений элементов деревянных конструкций
  • Клеевые соединения
  • Соединения на врубках
  • Соединения на цилиндрических нагелях
  • Соединения на гвоздях и шурупах, работающих на выдергивание
  • Соединения на пластинчатых нагелях
  • Соединения на вклеенных стальных стержнях, работающих на выдергивание или продавливание
  • 6. Указания по проектированию деревянных конструкций
  • Балки, прогоны, настилы
  • Составные балки
  • Балки клееные
  • Фермы
  • Арки и своды
  • Рамы
  • Опоры воздушных линий электропередачи
  • Конструктивные требования по обеспечению надежности деревянных конструкций
  • Дополнительные требования к древесине Приложение 1
  • Нормативные и временные сопротивления древесины сосны и ели Приложение 2
  • Плотность древесины и фанеры Приложение 3
  • Данные для расчета сжатых, изгибаемых и сжато-изгибаемых элементов Приложение 4
  • Графики для расчета фанерных стенок балок и плит Приложение 5
  • Все страницы

3. Расчетные характеристики материалов

3.1. Расчетные сопротивления древесины сосны (кроме веймутовой), ели, лиственницы европейской и японской приведены в табл. 3.

Расчетные сопротивления, , для сортов древесины

1. Изгиб, сжатие и смятие вдоль волокон:

а) элементы прямоугольного сечения (за исключением указанных в подпунктах «б», «в») высотой до 50 см

б) элементы прямоугольного сечения шириной свыше 11 до 13 см при высоте сечения свыше 11 до 50 см

в) элементы прямоугольного сечения шириной свыше 13 см при высоте сечения свыше 13 до 50 см

г) элементы из круглых лесоматериалов без врезок в расчетном сечении

2. Растяжение вдоль волокон:

а) неклееные элементы

б) клееные элементы

3. Сжатие и смятие по всей площади поперек волокон

4. Смятие поперек волокон местное:

а) в опорных частях конструкций, лобовых врубках и узловых примыканиях элементов

б) под шайбами при углах смятия от 90 до 60°

5. Скалывание вдоль волокон:

а) при изгибе неклееных элементов

б) при изгибе клееных элементов

в) в лобовых врубках для максимального напряжения

г) местное в клеевых соединениях для максимального напряжения

6. Скалывание поперек волокон:

а) в соединениях неклееных элементов

б) в соединениях клееных элементов

7. Растяжение поперек волокон элементов из клееной древесины

Примечания: 1. Расчетное сопротивление древесины местному смятию поперек волокон на части длины (при длине незагруженных участков не менее длины площадки смятия и толщины элементов), за исключением случаев, оговоренных в п. 4 данной таблицы, определяется по формуле

, (1)

где Rс90 — расчетное сопротивление древесины сжатию и смятию по всей поверхности поперек волокон (п. 3 данной таблицы);

l — длина площадки смятия вдоль волокон древесины, см.

2. Расчетное сопротивление древесины смятию под углом a к направлению волокон определяется по формуле

. (2)

3. Расчетное сопротивление древесины скалыванию под углом к направлению волокон определяется по формуле

. (3)

4. В конструкциях построечного изготовления величины расчетных сопротивлений на растяжение, принятые по п. 2а данной таблицы, следует снижать на 30%.

5. Расчетное сопротивление изгибу для элементов настила и обрешетки под кровлю из древесины 3-го сорта следует принимать равным 13 МПа (130 кгс/см 2 ).

Расчетные сопротивления для других пород древесины устанавливаются путем умножения величин, приведенных в табл. 3, на переходные коэффициенты mп, указанные в табл. 4.

Коэффициент mп для расчетных сопротивлений

сжатию и смятию поперек волокон Rс90, Rсм90

1. Лиственница, кроме европейской и японской

2. Кедр сибирский, кроме Красноярского края

3. Кедр Красноярского края, сосна веймутова

6. Ясень, клен, граб

10. Ольха, липа, осина, тополь

Примечание. Коэффициенты mп, указанные в таблице для конструкций опор воздушных линий электропередачи, изготавливаемых из не пропитанной антисептиками лиственницы (при влажности £ 25%), умножаются на коэффициент 0,85.

3.2. Расчетные сопротивления, приведенные в табл. 3, следует умножать на коэффициенты условий работы:

а) для различных условий эксплуатации конструкций — на значения коэффициент mв, указанные в табл. 5;

Условия эксплуатации (по табл. 1)

Условия эксплуатации (по табл. 1)

б) для конструкций, эксплуатируемых при установившейся температуре воздуха до +35° С, — на коэффициент mт = 1; при температуре +50° С — на коэффициент mт = 0,8. Для промежуточных значений температуры коэффициент принимается по интерполяции;

в) для конструкций, в которых напряжения в элементах, возникающие от постоянных и временных длительных нагрузок, превышают 80% суммарного напряжения от всех нагрузок, — на коэффициент mд = 0,8;

г) для конструкций, рассчитываемых с учетом воздействия кратковременных (ветровой, монтажной или гололедной) нагрузок, а также нагрузок от тяжения и обрыва проводов воздушных ЛЭП и сейсмической, — на коэффициенты mн, указанные в табл. 6;

для всех видов сопротивлений, кроме смятия поперек волокон

для смятия поперек волокон

1. Ветровая, монтажная, кроме указанной в п. 3

Для опор воздушных линий электропередачи

3. Гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой

При обрыве проводов и тросов

д) для изгибаемых, внецентренно-сжатых, сжато-изгибаемых и сжатых клееных элементов прямоугольного сечения высотой более 50 см значения расчетных сопротивлений изгибу и сжатию вдоль волокон — на коэффициенты mб, указанные в табл. 7;

Высота сечения, см

е) для изгибаемых, внецентренно-сжатых, сжато-изгибаемых и сжатых клееных элементов в зависимости от толщины слоев значения расчетных сопротивлений изгибу, скалыванию и сжатию вдоль волокон — на коэффициенты mсл, указанные в табл. 8;

Толщина слоя, мм

ж) для гнутых элементов конструкций значения расчетных сопротивлений растяжению, сжатию и изгибу — на коэффициенты mгн, указанные в табл. 9;

Примечание: rк — радиус кривизны гнутой доска или бруска; а — толщина гнутой доски или бруска в радиальном направлении.

и) для растянутых элементов с ослаблением в расчетном сечении и изгибаемых элементов из круглых лесоматериалов с подрезкой в расчетном сечении — на коэффициент mо = 0,8;

Читайте также  Дерево бонсай что символизирует?

к) для элементов, подвергнутых глубокой пропитке антипиренами под давлением, — на коэффициент mа = 0,9.

3.3. Расчетные сопротивления строительной фанеры приведены в табл. 10.

Расчетные сопротивления,

Растяжению в плоскости лис­та Rф.р

сжатию в плоскости листа Rф.с

изгибу из плоскости листа Rф.и

скалыванию в плоскости лис­та Rф.ск

срезу перпендикулярно плоскости листа Rф.ср

1. Фанера клееная березовая марки ФСФ сортов В/ВВ, В/С, ВВ/С

а) семислойная толщиной 8 мм и более:

поперек волокон наружных слоев

под углом 45° к волокнам

б) пятислойная толщиной 5-7 мм:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

2. Фанера клееная из древесины лиственницы марки ФСФ сортов В/ВВ и ВВ/С семислойная толщиной 8 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

3. Фанера бакелизиро­ванная марки ФСБ толщиной 7 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

Примечание. Расчетные сопротивления смятию и сжатию перпендикулярно плоскости листа для березовой фанеры марки ФСФ Rф.с.90 = Rф.см.90 = 4 МПа (40 кгс/см 2 ) и марки ФБС Rф.с.90 = Rф.см.90 = 8 МПа (80 кгс/см 2 ).

В необходимых случаях значения расчетных сопротивлений строительной фанеры следует умножать на коэффициенты mв, mт, mд, mн и mа, приведенные в пп. 3.2, а; 3.2, б; 3.2, в; 3.2, г; 3.2, к настоящих норм.

3.4. Упругие характеристики и расчетные сопротивления стали и соединений стальных элементов деревянных конструкций следует принимать по главе СНиП по проектированию стальных конструкций, а арматурных сталей — по главе СНиП по проектированию бетонных и железобетонных конструкций.

Расчетные сопротивления ослабленных нарезкой тяжей из арматурных сталей следует умножать на коэффициент mа = 0,8, а из других сталей — принимать по главе СНиП по проектированию стальных конструкций как для болтов нормальной точности. Расчетные сопротивления двойных тяжей следует снижать умножением на коэффициент m = 0,85.

3.5. Модуль упругости древесины при расчете по предельным состояниям второй группы следует принимать равным: вдоль волокон Е = 10 000 МПа (100 000 кгс/см 2 ); поперек волокон Е90 = 400 МПа (4000 кгс/см 2 ). Модуль сдвига древесины относительно осей, направленных вдоль и поперек волокон, следует принимать равным G90 = 500 МПа (5000 кгс/см 2 ). Коэффициент Пуассона древесины поперек волокон при напряжениях, направленных вдоль волокон, следует принимать равным n90.0 = 0,5, а вдоль волокон при напряжениях, направленных поперек волокон, n0.90 = 0,02.

Величины модулей упругости строительной фанеры в плоскости листа Еф и Gф и коэффициенты Пуассона nф при расчете по второй группе предельных состояний следует принимать по табл. 11.

Модуль упругости Еф,

Модуль сдвига Gф,

Коэффициент Пуассона nф

1. Фанера клееная березовая марки ФСФ сортов В/ВВ, В/С, ВВ/С семи­слой­ная и пяти­слой­ная:

К вопросу нормирования модуля упругости древесины сосны

В последние десятилетия как в нашей стране, так и за рубежом с применением деревянных клееных конструкций возводятся здания и сооружения, имеющие пролеты от 20 до 120 м.

При расчете таких конструкций (определении внутренних усилий от действия внешних нагрузок и воздействий) в обязательном порядке учитывается их деформированное состояние. Как правило, расчеты выполняются с использованием программных комплексов, где одной из многих исходных данных является величина модуля упругости древесины. В зависимости от величины модуля упругости можно получать различные значения внутренних усилий в сжатых и сжато-изгибаемых элементах деревянных конструкций и, как следствие, размеры поперечных сечений. Обоснованный выбор величины модуля упругости древесины является одной из важных задач при проектировании деревянных конструкций, который усугубляется еще и такими ее свойствами, как анизотропия и ползучесть.

В нормах [1] величина модуля упругости древесины вдоль волокон для конструкций, защищенных от нагрева при относительной влажности окружающего воздуха W ≤75% и находящихся под действием постоянной и временной нагрузок, принималась равной Е k,0 = 10 000 МПа. Такое ее значение применялось в расчетах деревянных конструкций по предельным состояниям второй группы. Что же касалось расчета на устойчивость, то здесь использовался безразмерный параметр в виде отношения кратковременного модуля упругости к временному сопротивлению сжатию.

В нормах [2] при расчете деревянных конструкций по предельным состояниям второй группы, как и в предыдущих нормах [1], было принято Е k,0 = 10 000 МПа. В расчетах элементов на прочность по деформированной схеме и на устойчивость было сделано допущение, что отношение Е/f c,0 = 300 и не зависит от породы древесины, сорта и влажности материала, длительности действия нагрузки, температуры, размеров сечения элементов [3]. То есть в расчетах по деформированной схеме модуль упругости определяется из выражения

Е 1 = 300 f c,0, d , (1)

где f c,0, d – расчетное сопротивление сжатию древесины вдоль волокон.

В этом случае при значениях расчетного сопротивления древесины сосны и ели первого сорта f c,0, d = 14–16 МПа модуль упругости Е 1 = 4200–4800 МПа.

Практика эксплуатации деревянных конструкций показывает, что использование кратковременного модуля упругости древесины, равного Е к,0 = 10 000 МПа, в условиях длительной эксплуатации приводит к занижению расчетных прогибов конструкций. И наоборот, заниженное значение модуля упругости, определяемое по (1), в расчетах по деформированной схеме приводит к неоправданно завышенным сечениям деревянных элементов. В работе [4] установлено, что при определении прогибов деревянных конструкций необходимо учитывать длительный модуль упругости.

В результате теоретических исследований установлено, что при действии постоянной нагрузки в течение срока службы 50 лет и влажности древесины 12% Е con /Е k,0 = 0,76. Экспериментальные исследования деревянных образцов на действие постоянной нагрузки вдоль волокон продолжительностью до 940 дней позволили получить следующие значения коэффициентов длительности: при растяжении Е con /Е k,0 = 0,77; при сжатии Е con /Е k,0 = 0,76 [5]. Следовательно, данные работы [3] подтвердили достоверность выводов работы [4], касающихся величины соотношения длительного модуля упругости к кратковременному. С учетом совместного действия постоянной и снеговой нагрузок в работе [4] прогибы деревянных конструкций предлагается определять по формуле

U con = k (1,32 ρ 0 +1,15S 0 )/E k , (2)

где ρ 0 – величина постоянной нагрузки;

S 0 – величина снеговой нагрузки.

Из выражения (2) можно получить:

– для постоянной нагрузки Е con = 0,76 E k,0 ;

– для снеговой нагрузки Е con = 0,909 E k,0 .

Усредняя значения коэффициента длительности для модуля упругости при совместном действии на конструкцию постоянной и снеговой нагрузок, γ con = (0,76+0,909)/2 = 0,83.

Следует отметить, что в нормах [1] величина кратковременного модуля упругости Е k,0 = 10 000 МПа соответствовала влажности древесины W = 15%. В нормах [2] нормативная влажность древесины была принята W = 12%, но значение модуля упругости осталось прежним, что некорректно. В соответствии с ГОСТ 16483.9-73* при влажности W = 12% модуль упругости будет равен Е k,0 = 10 309 МПа. Тогда нормативное значение длительного модуля упругости будет равно

Е k, con = Е k,0 γ con = 10 309 × 0,83 = 8556 МПа.

Что же касается выражения (1) по определению модуля упругости древесины для расчетов элементов на прочность по деформированной схеме, то допущение, что отношение модуля упругости древесины при сжатии вдоль волокон к сопротивлению древесины на прочность является постоянной величиной, равной 300, не зависит от вышеуказанных факторов и необоснованно по следующим причинам. При назначении расчетного сопротивления древесины на сжатие в зависимости от временного сопротивления учитывается коэффициент вариации υ = 0,15 и коэффициент длительного сопротивления γ con = 0,67, для модуля упругости коэффициент вариации υ = 0,20, а коэффициент длительности (как приведено выше) γ con = 0,83. В связи с этим предлагается определять расчетное значение длительного модуля упругости в зависимости от его нормативного значения по аналогии с определением расчетного сопротивления древесины. Установлено [6], что кратковременное значение модуля упругости Е k,0 = 10 000 МПа, приведенное в [2], является минимальным вероятным значением с обеспеченностью 0,95, т.е. нормативным значением. Тогда в соответствии с [3] расчетное значение будет равно E d, con = E k, con /
γ m = 6800 МПа, где γ m – коэффициент надежности по материалу, равный 1,25.

С некоторым округлением полученных результатов можно принять: для расчета деревянных конструкций по второй группе предельных состояний длительное нормативное значение модуля упругости древесины вдоль волокон E k, con = 8500 МПа; для расчета деревянных конструкций по деформированной схеме длительное расчетное значение модуля упругости древесины вдоль волокон E d, con = 6500 МПа.

1. СНиП II-В.4–71* Деревянные конструкции. Нормы проектирования. – М.: Стройиздат, 1978. – 32 с.

2. СНиП II–25–80 Деревянные конструкции. – М.: Стройиздат, 1982. – 65 с.

3. Пособие по проектированию деревянных конструкций (к СНиП II-25–80). – М.: Стройиздат, 1986. – 216 с.

4. Денеш, Н.Д. Учет длительности действия снеговой и постоянной нагрузок при расчете прогибов деревянных конструкций / Изв. вузов. Строительство и архитектура. – 1990. – № 7. – С. 16–20.

5. Кваснико, Е.Н. Вопросы длительного сопротивления древесины. – Л.: Литература по строительству, 1972. – 95 с.

6. Цепаев, В.А. Оценка модуля упругости древесины конструкций // Жилищное строительство. – 2003. – № 2. – С. 11–13.

Сравнение свойств хвойных пород древесины

Хвойная древесина — это материал с уникальными качествами, который востребован при строительстве, для изготовления мебели и разных столярных изделий. Работа с древесиной хвойной породы доставит истинное удовольствие, если разбираться в её свойствах и умело их использовать.

Виды древесины хвойных пород

По российским стандартам пиломатериалы изготавливают из 5 видов хвойных пород деревьев, поэтому в этой статье будут рассмотрены именно эти виды.

1. Сосна

Известно до 120 видов сосны. В России 20% территории занимает сосна обыкновенная, сибирская и крымская.

Сосна — это хвойное дерево с длинным и ровным стволом. Деревья вырастают до 40 метров высотой и имеют ствол диаметром до метра. Кора у дерева красно-бурого цвета с глубокими бороздками. Период жизни у обыкновенной сосны может составлять до 500 лет.

Читайте также  Грунт для кофейного дерева в домашних условиях

В разрезе у сосны ядро по цвету не сливается с жёлто-белой заболонью. Годовые кольца хорошо просматриваются и имеют резкие переходы от ранних и поздних периодов роста.

В текстуре древесины кроме сердцевидных сосудов и годичных колец через 60-100 см есть «живые» сучки.

2. Ель

К семейству Сосновых относят ель. Существует 50 видов деревьев этой породы. Очень распространена ель обыкновенная. Посадки из ели занимают большие территории в России. Если на северном Кавказе произрастает кавказская ель, то в степной полосе России встречается белая ель.

Возраст деревьев доходит до 300 лет. Особенностью ели считают её высокую требовательность к влаге почвы и воздуха. В лесу деревья растут с ровным стволом и отсутствием сучьев в его нижней части. Высотой дерево вырастает 60 метров, а ствол при этом может иметь диаметр до 2 метров.

Безъядровая порода с немногочисленными смоляными ходами. Срез имеет однородную белую расцветку, иногда встречается желтоватый или розовый оттенок. Через каждые 30 см располагаются «мёртвые» мелкие сучки. Древесные волокна с мелкой текстурой и низкой смолистостью.

Текстура невыразительная. Изредка на волокнах встречаются «кармашки» со смолой. При высокой температуре смола вытекает. Часто ель проедает короед, поэтому остаются отверстия.

3. Лиственница

В России лиственница занимает большую часть лесов. Она относится к однодомным растениям семейства Сосновых. Известно около 14 видов такого дерева. Лиственница единственное хвойное листопадное дерево. В лесных массивах лиственница вырастает высотой более 40 метров. Дерево растёт быстро и доживает до 600 лет.

Ядровая порода, у которой тёмное ядро с красновато-бурым оттенком, занимает 70% ствола. У заболони белый или желтоватый оттенок. На срезе хорошо различаются годичные кольца и малочисленные смоляные ходы.

Текстура дерева напоминает текстуру сосны, но имеет более яркий и декоративный вид. Древесина тяжёлая, легко колется, имеет запах скипидара.

4. Кедр

Дерево из семейства Сосновых в России называют сибирской сосной. Кедр включает 4 вида и ценится древесиной, хвоей и семенами. В России встречаются три вида кедров: сибирский, кедрач и корейский.

Сосна кедровая вырастает до 40 метров высотой, а ствол достигает в диаметре двух метров. Дерево плодоносит до 300лет, а растёт до 500 лет.

У ядра кедра желтовато-розовый или светлый цвет. Желтовато-белая заболонь не имеет резкой границы с ядром. На срезе выделяются годичные кольца, но при этом переходы между ранней древесиной и поздней нерезкие, растушёванные.

Текстура кедра напоминает текстуру сосны, но у неё смоляных ходов меньше, а их размер больше. Дерево богато эфирными маслами, поэтому при нагревании выделяется бальзамический аромат, который убивает многие болезнетворные микробы.

5. Пихта

В семействе Сосновых есть вечнозелёное хвойное растение, которое называют пихтой, что в переводе с карельского означает «смола». Существует 50 видов пихт. В России больше всего посадок сибирской пихты.

Средняя высота дерева 50 метров, но встречаются экземпляры высотой до 80 метров. Ствол вырастает до диаметра 0,6 метра. Жизненный период пихты доходит до 500 лет, а цветёт дерево в возрасте 60 лет.

Кора у дерева гладкая и ровная, но с возрастом растрескивается. В раннем возрасте деревья не болеют, так как содержат летучие смолы. На коре есть утолщения, которые называют желваками. В них содержится густая живица. Это аналог смоляных ходов на стволах хвойных деревьев.

Безъядровая порода имеет спил, похожий на ель. Между сердцевиной и заболонью нет визуального различия. Иногда из старых волокон образуется ложное ядро. Древесина белого цвета. В некоторых случаях появляется жёлтый или бурый оттенок, а у середины среза буро-коричневый оттенок.

На срезе выделяются годичные кольца. Есть цветовые различия между возрастами древесины. Мелкие сучки располагаются между крупных сучков, собранных мутовками.

Текстура дерева длинноволокнистая, поэтому пихта нашла широкое применение в бумажной промышленности.

Физические свойства хвойных пород

У каждой хвойной древесины особенные физические свойства, с которыми связывают её использование.

1. Плотность

Показатель плотности определяют по отношению между массой и объёмом материала. Плотность имеет большое значение для дерева. Древесина твёрже и тяжелее, если высокий показатель плотности. Породы с высокой плотностью сложно обрабатывать из-за высокой прочности. Кроме того, плотные породы дерева плохо пропитываются антисептиками, а полы и лестницы из такого материала мало истираются.

Наиболее плотная древесина у лиственницы, а малую плотность имеет пихта, сосна и ель.

2. Влажность

Количественный показатель воды в дереве — это влажность. Она зависит от пористости дерева и состояния окружающей среды.

Пользуются понятием «естественная влажность», которая относится к растущему дереву или в первый момент после его спиливания.

Понятие «столярная влажность» относится к высушенной древесине, которую используют для внутренней отделки. Она составляет 8‒12%. При строительстве используют материал с влажностью 14%.

3. Усадка при сушке

Все пиломатериалы сушат, так как после этого повышается их прочность, твёрдость, износостойкость. При сушке происходит усушка и усадка дерева, а значит, меняются его размеры. От интенсивности сушки зависит распределение влаги внутри материала. Влажность снижают до 6‒8%, используя разные способы сушки.

Усадку древесины во время сушки оценивают по объёмному коэффициенту. Высокий показатель усадки считают недостатком породы дерева.

4. Проницаемость

Капилляры в древесине создают хорошие условия для проницаемости газов и жидкости. Испытания проводят, пропуская через дерево под давлением воду и воздух.

От проницаемости зависит уровень пропитки защитными составами хвойной древесины.

У сосны и ели из-за одинаковой пористости коэффициент проницаемости для водяного пара одинаковый: в продольном направлении 0,32 мг/(м•ч•Па), в поперечном направлении 0,06 мг/(м•ч•Па).

На уровень водной проницаемости и устойчивость к гниению влияют смоляные ходы. Они есть у всех хвойных пород, кроме пихты. У кедра самые крупные ходы размером до 0,14 мм, а самые мелкие 0,08 мм у лиственницы.

Показатели газопроницаемости у хвойных пород тоже разные.

5. Биостойкость

Главный враг дерева — это влага. Под её действием образуется гнилостный грибок, который разрушает материал. Биологическая стойкость зависит от способности материала сопротивляться разрушительному действию влаги. Её разделяют на два вида:

  • Естественная стойкость — зависит от породы дерева. У всех хвойных деревьев за исключением пихты, есть каналы, заполненные смолой. Из-за смолы повышается устойчивость к гниению.
  • Приобретённая стойкость — это устойчивость к гниению, которую повышают путём введения в древесину антисептика. Он не ухудшает свойства материала, а улучшает его стойкость. Выбор антисептика зависит от назначения древесины. Все хвойные деревья имеют разную стойкость к гниению.

6. Теплопроводность

Важное свойство хвойных деревьев удерживать тепло. Его определяют по коэффициенту теплопроводности: чем меньше коэффициент, тем древесина лучше удерживает тепло. Лучше всего тепло удерживает кедр.

Показатель теплопроводности зависит не только от уровня плотности, но и от влажности дерева. Высокий коэффициент теплопроводности имеют материалы с высокой влажностью и плотностью.

Механические и технологические свойства древесины хвойных пород

От этих свойств зависит производство и особенности обработки хвойных пиломатериалов.

1. Прочность

У хвойных деревьев есть способность противостоять разрушительным механическим воздействиям. Её показатель связан с направлением воздействия, плотностью, влажностью и качеством дерева.

Во время испытаний на образец действуют разными силами.

Все породы дерева в случае растяжения вдоль волокон имеют предел прочности не более 130 МПа. Этот показатель в первую очередь зависит от строения материала. Достаточно небольшого нарушения в структуре волокон, чтобы прочность значительно снизилась.

Растяжение дерева поперёк волокон показывает невысокую прочность всего 6,5 МПа.

Показатель сжатия вдоль волокон у хвойного дерева ниже в 2‒3 раза, чем показатель растяжения в том же направлении.

Более в пять раз сопротивление продольному сжатию превышает поперечное сжатие в радиальном и тангенциальном направлении.

Образец на изгиб испытывают под растяжением и сжатием. Показатель прочности хвойного материала во время изгиба вдвое превышает этот показатель, когда сжимают вдоль волокон.

Если дерево легко гнётся, то его считают гибким, вязким и упругим. Благодаря хорошей упругости дерево всегда возвращается в первоначальную форму.

2. Твёрдость

Показатель твёрдости дерева зависит от его сопротивления внедрению постороннего тела. При определении твёрдости способом Бринелля вдавливают в дерево силой

100 кг шарик 10 мм из металла. У одной породы твёрдость меняется в разных местах распила.

Твёрдость материала имеет значение при работе режущими инструментами: фрезерование, пиление.

3. Ударная вязкость

Во время деформации и разрушения от ударных нагрузок дерево поглощает энергию. Эту особенность материала называют ударной вязкостью. Её измеряют по затраченной энергии груза, который падает с определённой высоты. Вязкость тем выше, чем больше нужна работа, чтобы повредить образец.

4. Упругость

Хвойное дерево восстанавливает первоначальную форму, когда прекращается механическое воздействие. Эта способность объясняется упругостью материала. Модуль упругости определяет усилие, которое требуется приложить вдоль волокон, чтобы дерево деформировалось на 100%.

5. Сопротивление раскалыванию и скалыванию

При испытаниях на раскалывание деревянным клином разделяют вдоль волокон дерево на части. Происходит раскалывание (расщепление), которое зависит от вязкости материала. Сопротивление раскалыванию повышается от разных пороков дерева, например, от сучков.

При скалывании образец разрушают поперёк волокон, например, спилом. В этом случае прочность выше, чем при раскалывании.

6. Износостойкость

Поверхности материала при трении сопротивляется разрушению. Это свойство называют износостойкостью. Она зависит от твёрдости и плотности дерева.

Чем выше твёрдость, тем выше износостойкость. Высокая влажность повышает износ.

7. Удерживание металлического крепления

Благодаря упругости дерево удерживает гвозди и шурупы. Материал оказывает сопротивление удалению крепления. Сила удерживания зависит от влажности и плотности древесины, а также от размеров крепёжных элементов. Большое значение имеет направление по отношению к волокнам, под которым крепление входит в материал.

От правильного выбора породы хвойной древесины зависит долговечность и качество построенных сооружений, изготовленной мебели и столярных изделий.

Автор: Виктор Прохоров

Еще статьи из раздела Всё о древесине: